STRESS EVOLUTION AND NANOMORPHOLOGY DURING THIN FILM DEPOSITION - IN SITU NANOMECHANICS

Jerry Floro

Sandia National Laboratories, Surface and Interface Sciences 505-844-4708 jafloro@sandia.gov

Sean J. Hearne

Sandia National Laboratories, Nanostructure and Semiconductor Physics 505-844-0804 sjhearn@sandia.gov

Quantitative stress-strain measurements in-situ of a TEM

deformation processes

Top View

Side View

TEM studies of Nano-mechanical

Three and four point probe electrochemical measurements

Electrodeposition allows for unique studies of the effect of restricted geometries (via selective area growth) on stress and microstructure

Unpatterned films

Build upon studies of discrete phen

understand stress evolution in blanket films. Thickness (A) Decreased plating rate results in decreased stress

ordering and coarsening

Amorphous SiGe

MEMS-based tensile tester designed for actuation in-situ

in a TEM.

Gauge section located over Bosch hole through the wafer to facilitate plan-view TEM imaging during actuation.

Collaborator: M. De Boer

Ex-situ interferometry is used to characterize the stress-strain response of the MEMS structures.

ed from finite element alysis of data

Developing capability to build device using both lift-off masks and electroplating to allow study of nano-structured Al, Ni, and Cu.